DCS-400/800
Ai DCS-400 and DCS-800 4- or 8-channel controllers

Version 1.0, 01-25-2020

This is a RESTful HTTP API which uses JSON to move data to/from a target device. Rather than
sending commands to set individual properties, it transfers the state of the device over standard HTTP
methods.

This API uses the default HTTP port 80, to avoid firewall issues that may affect other ports.
Methods used

The following HTTP methods are used:

Method Purpose

GET Gets data

POST Updates data

DELETE Erases data/settings

Response codes

For all requests, 200 ok indicates success with a response body (e.g. updated device limits), 204 No
Content indicates success with no body, and all other codes indicate a failure of some sort.

Paths

GET

/info

Returns a JSON object containing the device name, active sequence, connected lightheads, and
device name.

Example requests

Gets device information

Request

No request body



Response (200 OK)

Content type: application/json

{

"activeEvent": 0,
"activeSequence": 0,
"firmware": "©30055_00",
"lights": [
"DF198-280RGBWQ4",

1,

"mode": "standard",

"name": "",

"temperatures": [
24.9820199999999986,
24.9229400000000005 ,
24.6817899999999995,
24.6100099999999991,
24.7792299999999983,
25.2210999999999999,
25.4734499999999997,
25.3807000000000009

1,

"trigger": "rising"

/info

Route for setting device-global config state.

The following configuration settings can be set via the request body:

JSON property

Setting name Possible values
Device name Any ASCII string (16 characters or less)
name
Trigger trigger String: "rising" or "falling”, Integer: 1 or 0, Boolean: true
edge or false
Device mode "sequenced" or "standard"
mode

A response code of 204 No Content indicates success.

Example requests

Set name, trigger edge, and mode




Request

Content type: application/json

{
"mode": "standard",
"name": "Test Device",
"trigger": "rising"

}

Response (204 No Content)

(No response body)

GET

/channels

Get channel configs. Returns JSON array containing information on the current state of all
channels.

Example requests

Get Channels

Request

No request body

Response (200 OK)

Content type: application/json

[

{
"current": 9,
"id": o,
"pulseDelay": 0,
"pulseWidth": @

s

{
"current": 0,
"id": 1,
"pulseDelay": @,
"pulseWidth": @

¥

{

"current": 9,




"id": 2,
"pulseDelay": @,
"pulseWidth": @

3

{
"current": 0,
"id": 3,
"pulseDelay": 0,
"pulseWidth": @

3

{
"current": 0,
"id": 4,
"pulseDelay": @,
"pulseWidth": @

3

{
"current": 0,
"id": 5,
"pulseDelay": 0,
"pulseWidth": @

3

{
"current": 0,
"id": 6,
"pulseDelay": @,
"pulseWidth": @

3

{
"current": 0,
"id": 7,
"pulseDelay": 0,
"pulseWidth": @

}

]
GET

/channels/:chan

URL parameters

Key Example value Description

chan | 2 Channel number [1-8]

Get individual channel data

Example requests

Get channel 2

Request




No request body

Response (200 OK)

Content type: application/json

{
"current": 500,
"id": 1,
"maxCurrent": 2675,
"pulseDelay": 0,
"pulseWidth": 1500
¥

/channels/:chan

URL parameters

Key Example value Description

chan | 7 Channel number [1-8]

Set data on an individual channel

Example requests

Set data on channel 7

Request

Content type: application/json

{
"brightness": 57,
"pulseDelay": 50,
"pulseWidth": 1000
}

Response (204 No Content)

Content type: text/plain

Set data on Channel 1




Request

Content type: application/json

{
"brightness": 57,
"pulseDelay": 50,
"pulseWidth": 1000
}

Response (204 No Content)

Content type: text/plain

/channels/pulse

Pulses all channels. Acts like a hardware trigger when the device is in Standard Mode.

GET

/events/:ev

URL parameters

Key Example value Description

ev |1 Event ID [1-10]

Gets a saved Event from the controller. The form query in the URL can adjust how the
information is returned.

The value of the format query can take any of the following values:

Value Response format
json JSON-formatted string
short Base64 string with basic run-length encoding to save space

Anything else or absent | Non-compressed Base64 string

Example requests



Get Event information

Request

No request body

Response (200 OK)

Content type: application/json

{
"channels": [
{
"current": 200,
"id": 1,
"mode": 1,
"pulseDelay": 0,
"pulseWidth": ©
s
{
"current": 1250,
"id": 3,
"mode": 2,
"pulseDelay": O,
"pulselWidth": 2500
}
1,
"id": 1
}

/events/:ev

URL parameters

Key Example value Description

ev 1 Event ID

Sets an Event by listing all applicable channel values in JSON (see the example). Channel ids
are zero-based (0-7). All channels not explicitly set are zeroed-out. All channel properties (pulse
width, delay, etc.) are assumed to be zero if not set explicitly.

Example requests

Set Event 1 with channels 2 and 3 (‘id's 1 and 2) in continuous mode




Request

Content type: application/json

{
"channels": [
{
"current": 350,
"id": 1,
"mode": 1
s
{
"current": 200,
"id": 2,
"mode": 1
}
1
"id": 1
}

Response (204 No Content)

(No response body)

GET

/sequences

Gets a JSON list of all valid Sequence IDs.

Example requests

Get Sequences

Request

No request body

Response (200 OK)

Content type: application/json
[
1




GET

/sequences/:seq

URL parameters

Key Example value Description

seq | 1 Sequence number [1-10]

Gets the events defined on a particular sequence.

Example requests

Get Sequence 1

Request

No request body

Response (200 OK)

Content type: application/json

{
"events": [
1,
2

15
"id": 1

/sequences/:seq

URL parameters

Key Example value Description

seq |1 Sequence # [1-10]




Sets the events in a given sequence

Example requests

Set Sequence 1 to be Events 1 and 2

Request

Content type: application/json
{
"events": [

1,
2

Response (204 No Content)

(No response body)

DELETE

/sequences/:seq

URL parameters

Key Example value Description

seq |1 Sequence # [1-10]

Erases a given sequence.

/stop

Stops a running sequence, and turns off all active channels.

GET

/network




Get network configuration

Example requests

Get network configs

Request

No request body

Response (200 OK)

Content type: application/json

{
"dhcp": true,
"gateway": "192.168.100.1",
"ipAddress": "192.168.103.22",
"mac": "©0:22:FE:03:01:AC",
"subnetMask": "255.255.252.0"
}
/network

Set network configuration. IP addresses are set in dotted-quad notation.

When setting a static IP address, the Gateway and Subnet Mask take the following default
values if not set explicitly:

Property Default value

Gateway IP with last octet set to 1, so IP of 192.168.1.15 yields gateway of
address 192.168.1.1
Subnet mask 255.255.255.0

Example requests

Set network configs

Request

Content type: application/json




"gateway": "10.1.100.1",
"ipAddress": "10.1.100.4",
"subnetMask": "255.255.255.0"

Response (200 OK)

Content type: text/plain

Set IP address to 10.1.100.4 (now static)
Set gateway IP address to 10.1.100.1
Set subnet mask to 255.255.255.0

DELETE

/data

Performs a factory reset of the device, and erases all saved configuration information.

Response is HTTP 204 (No Content).




